Microbial Metabolism in Soil at Subzero Temperatures: Adaptation Mechanisms Revealed by Position-Specific 13C Labeling

نویسندگان

  • Ezekiel K. Bore
  • Carolin Apostel
  • Sara Halicki
  • Yakov Kuzyakov
  • Michaela A. Dippold
چکیده

Although biogeochemical models designed to simulate carbon (C) and nitrogen (N) dynamics in high-latitude ecosystems incorporate extracellular parameters, molecular and biochemical adaptations of microorganisms to freezing remain unclear. This knowledge gap hampers estimations of the C balance and ecosystem feedback in high-latitude regions. To analyze microbial metabolism at subzero temperatures, soils were incubated with isotopomers of position-specifically 13C-labeled glucose at three temperatures: +5 (control), -5, and -20°C. 13C was quantified in CO2, bulk soil, microbial biomass, and dissolved organic carbon (DOC) after 1, 3, and 10 days and also after 30 days for samples at -20°C. Compared to +5°C, CO2 decreased 3- and 10-fold at -5 and -20°C, respectively. High 13C recovery in CO2 from the C-1 position indicates dominance of the pentose phosphate pathway at +5°C. In contrast, increased oxidation of the C-4 position at subzero temperatures implies a switch to glycolysis. A threefold higher 13C recovery in microbial biomass at -5 than +5°C points to synthesis of intracellular compounds such as glycerol and ethanol in response to freezing. Less than 0.4% of 13C was recovered in DOC after 1 day, demonstrating complete glucose uptake by microorganisms even at -20°C. Consequently, we attribute the fivefold higher extracellular 13C in soil than in microbial biomass to secreted antifreeze compounds. This suggests that with decreasing temperature, intracellular antifreeze protection is complemented by extracellular mechanisms to avoid cellular damage by crystallizing water. The knowledge of sustained metabolism at subzero temperatures will not only be useful for modeling global C dynamics in ecosystems with periodically or permanently frozen soils, but will also be important in understanding and controlling the adaptive mechanisms of food spoilage organisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diel variations in carbon metabolism by green nonsulfur-like bacteria in alkaline siliceous hot spring microbial mats from Yellowstone National Park.

Green nonsulfur-like bacteria (GNSLB) in hot spring microbial mats are thought to be mainly photoheterotrophic, using cyanobacterial metabolites as carbon sources. However, the stable carbon isotopic composition of typical Chloroflexus and Roseiflexus lipids suggests photoautotrophic metabolism of GNSLB. One possible explanation for this apparent discrepancy might be that GNSLB fix inorganic ca...

متن کامل

Elucidation of intrinsic biosynthesis yields using 13C-based metabolism analysis

This paper discusses the use of 13C-based metabolism analysis for the assessment of intrinsic product yields - the actual carbon contribution from a single carbon substrate to the final product via a specific biosynthesis route - in the following four cases. First, undefined nutrients (such as yeast extract) in fermentation may contribute significantly to product synthesis, which can be quantif...

متن کامل

Microbial community composition and function across an arctic tundra landscape.

Arctic landscapes are characterized by a diversity of ecosystems, which differ in plant species composition, litter biochemistry, and biogeochemical cycling rates. Tundra ecosystems differing in plant composition should contain compositionally and functionally distinct microbial communities that differentially transform dissolved organic matter as it moves downslope from dry, upland to wet, low...

متن کامل

Assessment the effect of Slope aspect and position on some soil microbial indices in rangeland and forest

Extended abstract   Introduction   Topography is one of the effective factors in soil formation and development. Topographical features such as slope aspect and position, by affecting soil temperature, evaporation capacity, soil moisture content, soil organic matter, precipitation, movement, and accumulation of soil solution can impress soil microbial properties. For investigating the ...

متن کامل

Thermal adaptation of decomposer communities in warming soils

Temperature regulates the rate of biogeochemical cycles. One way it does so is through control of microbial metabolism. Warming effects on metabolism change with time as physiology adjusts to the new temperature. I here propose that such thermal adaptation is observed in soil microbial respiration and growth, as the result of universal evolutionary trade-offs between the structure and function ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017